

Subject to Export Control Procedure

2mm Connectors

Interchangeable with cPCI COTS Systems

- Hypertac® contacts provide high reliability
- Standard 2mm footprint
- Immune to shock & vibration
- High-temp LCP insulator meets NASA outgassing requirements
- Compatible with IEC 1076-4 101
- Press-in/compliant termination is also available for receptacle assembly, consult factory

Qualification Testing

The 2mm cPCI family of connectors has been flight qualification tested per Mil-DTL-55302, EEE-INST – 002 (NASA Goddard Space Flight Center Document), GEVS-SE, Rev. A, General Environmental Verification Standard for STS & ELV Payloads, Subsystems and Components. Testing included, but was not limited to:

LLCR: Low Level Contact Resistance IR: Insultation Resistance

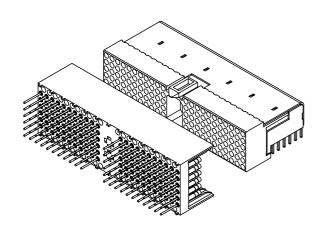
DWV: Dielectric Withstanding Voltage MFG: Mixed Flowing Gas

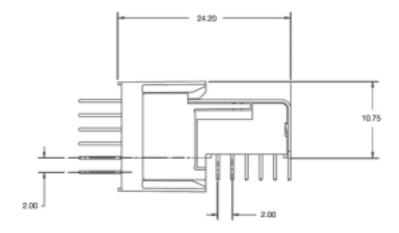
CRD: Contact Resistance

Should you require more information, please contact Technical Support.

General Specifications								
3U / 6U form factor	P1 / P4	P2 / P5	P 3		J1 / J4	J2 / J5	J3	
Part number reference	K2A110FMD	K2B110FMD	K2B95FMD	K2B125FMD	K2A110FFD	K2B110FFD	K2B95FFD	K2B125FF
Design criteria		IEC 1076-4 101					•	
Contact gender		Male	e Pin			Hypertac 0.4	4 mm socket	
Contact termination			Solder	tail tin lead (60	0-40) per Mil-P	-81728		
Contact spacing		2 mm						
Number of contacts		signal round	95 signal 19 ground	125 signal 25 ground	22 ground 1		95 signal 19 ground (top shield)	125 signal 25 ground (top shield)
Contact current rating				1 A	MP			•
Temperature range				minus -55C to	o plus + 125C			
Insulator material		30	0% Glass Fille	d LCP (meets I	NASA outgass	ing specification	on)	
Flammability rating				94	V-O			
Insulation resistance		>5000 megohm						
Contact material		BeCu pin contacts BeCu Hypertac socket wires / brass body					s body	
Mating contact plating		50 micro inch gold / 50 micro inch nickel						
Suggested PCB hole diameter	0.7 mm after plating 0.6 mm after plating							
Weight	15.7 g	15.0 g	12.9 g	12.2 g	10.9 g	10.8 g	8.9 g	12.3 g

SEPTEMBER **2006** 23

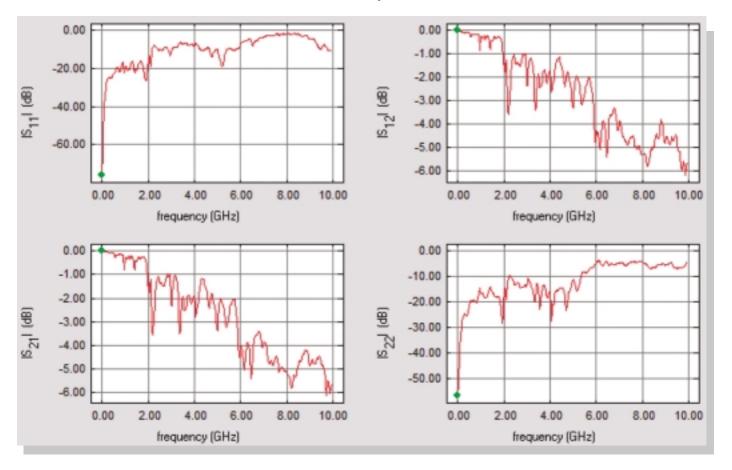



PERFORMANCE SPECIFICATIONS								
3U / 6U form factor	P1 / P4	P2 / P5	P3		J1 / J4	J2 / J5	JЗ	
Part number reference	K2A110FMD	K2B110FMD	K2B95FMD	K2B125FMD	K2A110FFD	K2B110FFD	K2B95FFD	K2B125FFD
CRD (resistance @ rat- ed current)				4.85 milliohi	ms average			
LLCR (low level contact resistance)	7.20 milliohms average							
DWV (dielectric withstanding voltage)	1000 VRMS							
Contact life (mate / demate)	> 4000 Cycles (mated connector pair)							
Mating force	16.38 LBF average (per mated connector pair)							
Demating force	13.2 LBF average (per mated connector pair)							
Vibration (Sinusoidal)*	Frequency 10 to 2000 HZ at 15 G (MIL-DTL-55302)							
Vibration (Random)**	Flight chassis unit level vibration (NASA Goddard GEVS SE Rev A)							
Mechanical shock*		100 G peak value (MIL-DTL-55302)						

- * Testing was performed to determine if fretting occurs due to mechancial motion and to evaluate the integrity of the Hypertac contact system relative to severe shock. To validate the test, low nanosecond event detection was perfromed at 10 nanoseconds. **There were no events recorded**.
- Testing was performed using a 6U Flight Chassis to determine if fretting occurs due to mechanical motion and to evaluate the integrity of the test samples relative to severe mechanical enivironment. To validate the test, low nanosecond event detection was performed at 50 nanoseconds. **There were no events recorded**.

2mm Connector

2mm Connector Mated Pair



24 SEPTEMBER 2006

JO/PO High Speed Electrical Performance

1. Differential S-parameter 1,2

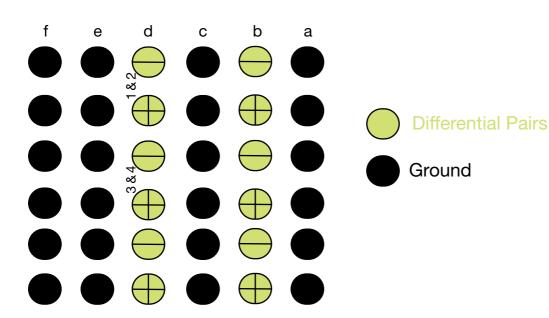
2. Propagation Delay and Skew

Propagation delay through the intrinsic connector assembly is estimated by making a measurement on the reflected signal received on the same broadband fixture that is used to obtain the full vector scattering parameters. In these measurements, there is no inclusion of any other pin lengths other than what is within the intrinsic connector.

Parameters	Connector Row						
Parameters	а	b		C	d		е
Propagation Delay (ps)	68	90	1	12	134		156
Skew (ps)	22	22 22		22	22		
Maximum Data Rate 2	3.125 Gb/s						

Notes:

1) Pattern illustrated in the figure on next page was used in the S-parameter and cross talk measurements.


2) Please refer to the full characterization test report for details

SEPTEMBER 2006 25

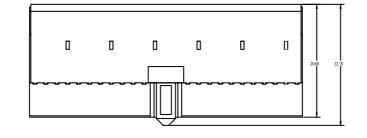
3. Connector Eye-Pattern-Diagram 1, 2

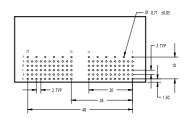
	622 Mb/s	1.25 Gb/s	3.125 Gb/s
Intrinsic			
With inclusion of PCB VIAs			
With inclusion of near end cross talk (aggressor/ victim = 30%)	- Figure 1		
With inclusion of near end cross talk (aggressor/ victim = 100%)			

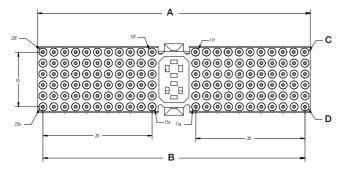
Notes

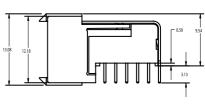
1) Pattern illustrated in the figure above was used in the S-parameter and cross talk measurements.

2) Please refer to the full characterization test report for details

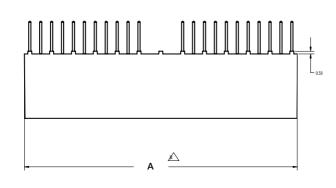

26 SEPTEMBER 2006

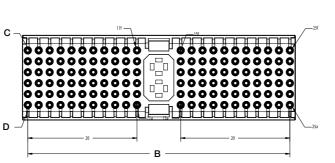


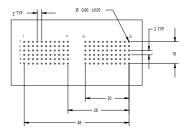

K2A Male - K2A110FMDTBH

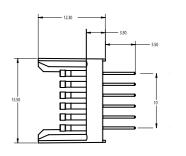

PCB Layout

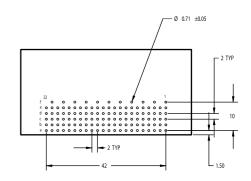
Connector Dimensions				
А	49.98			
В	48			
С	1f			
D	1a			

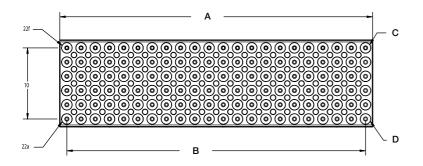


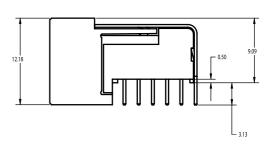



K2A Female - K2A110FFDTABH

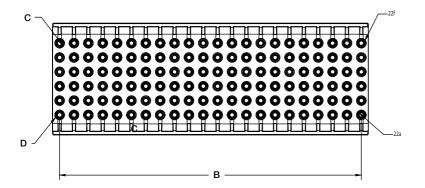

PCB Layout

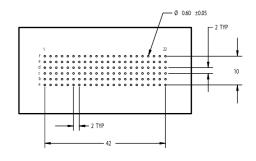


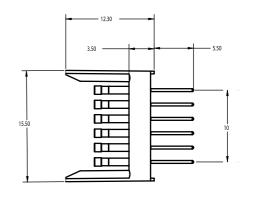



K2B Male

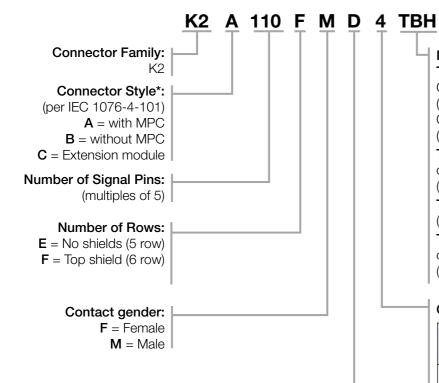
PCB Layout




Connector Dimensions for K2B Male					
	K2B95FMD	K2B110FMD	K2B125FMD		
А	37.98	43.98	49.98		
В	36	42	48		
С	1f	1f	1f		
D	1a	1a	1a		


K2B Female

PCB Layout


PCB LAYOUT

Connector Dimensions for K2B Female					
	K2B95FFD	K2B110FFD	K2B125FFD		
А	37.98	43.98	49.77		
В	36	42	48		
С	1f	1f	1f		
D	1a	1a	1a		

Ordering Information

Plating:

TAH = 50 Micro-inches

Gold over Nickel

(mating surface only)

Other surfaces Gold Flash over Nickel

(female contacts only)

TABH = Same as TAH with Tin / Lead (60 - 40)

over Nickel on contact teminations

(female contacts only)

TH = 50 Micro-inches Gold over Nickel

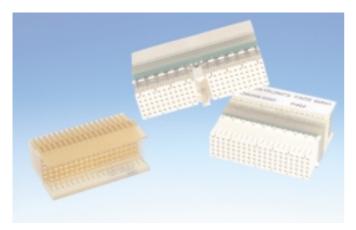
(male contacts only)

TBH = same as TH with Tin/Lead (60-40) over Nickel on contact terminations

(male contacts only)

Contact Terminal Length

Designation	Backplane Connector Tail Length	Daughter Board Connector Tail Length
D	5.50mm	3.12mm
D1	TBD	TBD
D2	16.0mm	TBD
D3	TBD	TBD
D4	4.22mm	4.22mm
D5	6.73mm	TBD


Terminal Style:

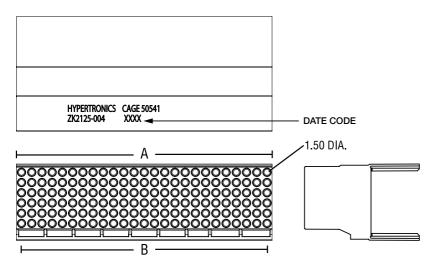
D = Straight dip solder

C = Compliant (backplane only)

^{*} Pin one location per IEC 1076-4-101

Subject to Export Control Procedure

2mm Adapters and Solder Fixtures*


Designed to provide interface between commercial cPCI connectors and Hypertronics 2mm connector series

- Hypertac adapters provide a simple way to interface with commercial testing equipment
- K2A110-0001, K2B110-0001 and K2B095-0001 adapt commercial cPCI daughter card connectors to Hypertac backplane connectors
- K2A110-0002, K2B110-0002 and K2B095-0002 adapt commercial cPCI backplane connectors to Hypertac daughter card connectors

General Specifications

- Hi-temp LCP insulator material
- Hypertac contact technology
- 50 micro inches gold plating on all contact surfaces
- Mechanical PCB layout conforms to IEC 61076-101 standard

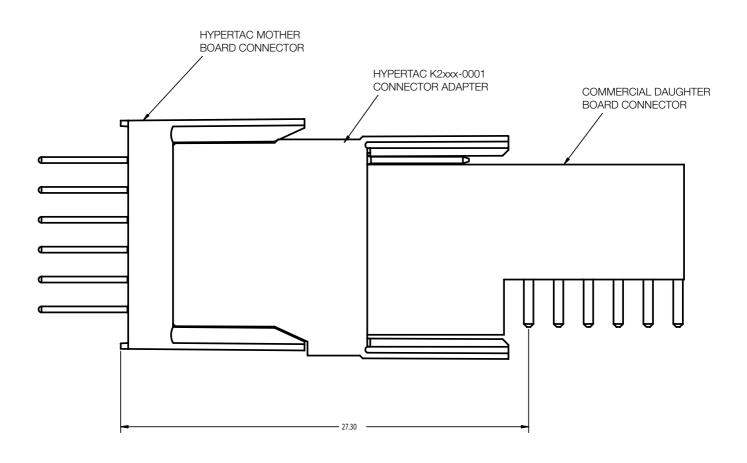
2mm Solder Fixtures - ZK2 Series

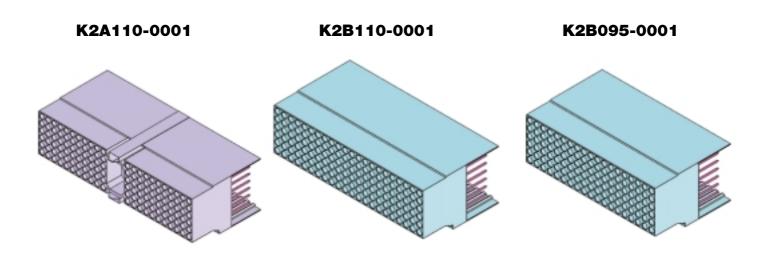
ZK2 series solder fixures provide an economical method for stabilizing the socket contact during the hand soldering and reflow solder process.

Marking to include fixture part number, Hypertac' cage code and date code

Fixture Number	Used with K2A	A	В
ZK2095-005	K2B95FFDTABH	37.98	36.00
ZK2110-008	K2B110FFDTABH	43.98	42.00
ZK2125-004	K2B125FFDTABH	49.98	48.00
ZK2110-007	K2A110FFDTABH	49.98	48.00

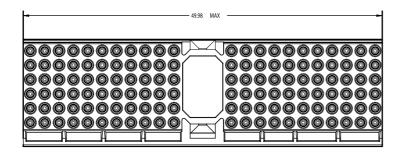
^{*}Adapters are not flight qualified

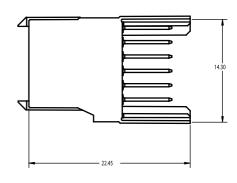

Dimensions are in mm

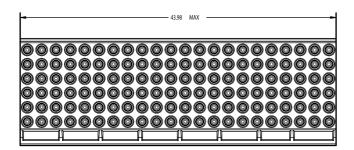

SEPTEMBER 2006 31

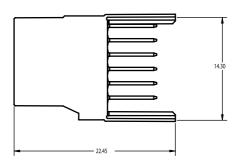
2mm Mated Adapter - K2xxx-0001

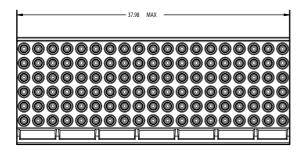
To mate a commercial daughter board connector to a Hypertac mother board connector

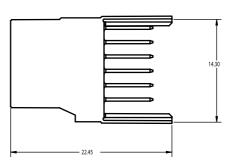




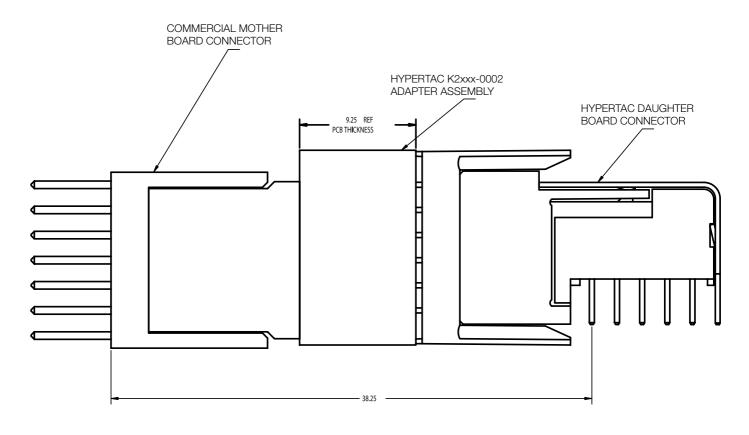

K2A110-0001, K2B110-0001 and K2B095-0001 adapt commercial cPCI daughter card connectors to Hypertac backplane connectors

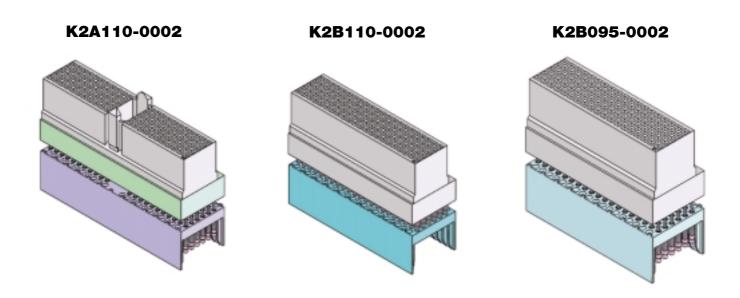

K2A110-0001




K2B110-0001

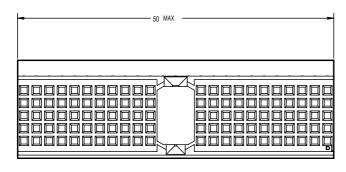
K2B095-0001

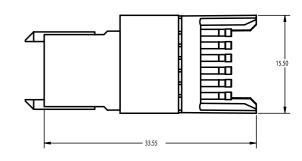


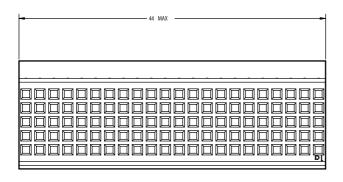


2mm Mated Adapter- K2xxx-0002

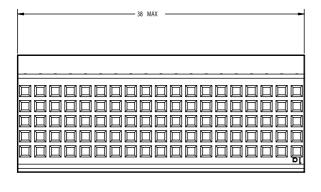
To mate a commercial mother board connector to a Hypertac daughter board connector

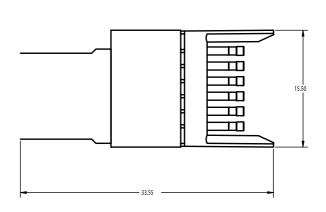




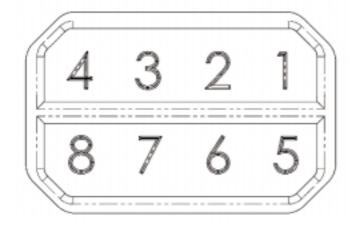

K2A110-0002, K2B110-0002 and K2B095-0002 adapt commercial cPCI backplane connectors to Hypertac daughter card connectors

K2A110-0002

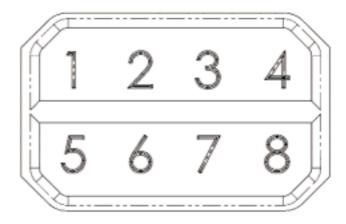



K2B110-0002

K2B095-0002



Recommended Alignment Fixturing and Tooling


Alignment Tool	Description	Work Instructions
T2066	Std cPCl 6U Backplane	S50475
T2081	Std cPCI 6U Daughtercard w/mating pin alignment	S50476
T2082	Std cPCI 6U Daughtercard w/out mating pin alignment	S50476

Consult factory for alignment tool and work instructions information

Keying options available per IEC specification

Male Keying, Typical Part No. - ZK2000-002

Female Keying, Typical, Part No. - ZK2000-001